Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Res Commun ; 3(8): 1423-1434, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37534375

RESUMEN

Elucidating the cellular immune components underlying aggressive prostate cancer, especially among African American (AA) men who are disproportionately affected by this disease compared with Caucasian American (CA) men, will support more inclusive precision medicine treatment strategies. We aimed to evaluate which immune-related genes and cell types are differentially expressed in AA tumors and how immunobiology impacts prostate cancer progression. We purified nucleic acid from tumor biopsies, obtained following radical prostatectomy, from 51 patients (AA = 26, CA = 25). Gene expression was measured using the NanoString platform from which we estimated immune cell abundances and assessed differences between groups based on clinicopathologic data. Product-limit estimates determined associations with biochemical recurrence (BCR)-free and metastasis-free survival. DVL2 and KLRC2 were significantly upregulated in CA tumors and were also associated with worse disease progression. No significant differences in immune cell abundances by race were observed. Highly significant reductions in abundances of mast cells versus tumor-infiltrating lymphocytes (TIL) were found in men with high-grade pathologies and in men who later developed metastases. Low ratios of mast cells versus TILs were associated with worse BCR-free survival and metastasis-free survival. Although estimated immune cell abundances were not different by race, we identified genes involved in metabolism and natural killer cell functions that were differentially expressed between AA and CA tumors. Among the entire cohort, depletion of mast cells within prostatectomy tumors was characteristic of advanced disease and susceptibility to disease progression. Significance: Our findings demonstrate that there are immune-related genes and pathways that differ by race. Impaired intratumoral cellular immune composition, especially for TIL-normalized mast cells, may be vital in predicting and contributing to prostate cancer disease progression.


Asunto(s)
Personal Militar , Neoplasias de la Próstata , Masculino , Humanos , Mastocitos/patología , Antígeno Prostático Específico , Pronóstico , Recurrencia Local de Neoplasia/genética , Neoplasias de la Próstata/genética , Progresión de la Enfermedad , Subfamília C de Receptores Similares a Lectina de Células NK
2.
Am J Clin Exp Urol ; 11(2): 79-102, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168942

RESUMEN

Although PSA testing is widely used in prostate cancer diagnosis, it remains an imperfect assay due to its lack of accuracy. While several urine or tissue-based gene expression assays are available to identify patients with higher risk of adverse disease and to aid in deciding treatment options, there is still a critical need for reliable biomarkers to monitor disease progression and treatment response. Autoantibodies (AAbs) produced by the humoral immune response against tumor associated antigens offer an attractive alternative, as they target a wide variety of prostate cancer specific antigens and can be collected by using clinically non-invasive methods. Herein, we review the transition from traditional methods that identify individual AAbs to high throughput approaches that detect multiple targets simultaneously in patient sera. We also discuss how these approaches improved the sensitivity and specificity of AAb detection and enhanced prostate cancer diagnosis and prognosis. Cancer vaccines offer potential as a novel therapeutic strategy in their ability to stimulate both cell-mediated and antibody-mediated cytotoxic responses. Ongoing efforts aim to identify immunotherapy targets that also stimulate a strong antibody response, since antibodies activated by the anti-cancer humoral response can eliminate cancer cells effectively via several distinct mechanisms. Autoantibodies are useful not only for the diagnosis of prostate cancer, predicting disease progression, and tracking response to treatment, but can also be harnessed as therapeutic agents for prostate cancer treatment.

3.
J Immunol Methods ; 518: 113493, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37196930

RESUMEN

BACKGROUND: Aberrant ETV1 overexpression arising from gene rearrangements or mutations occur frequently in prostate cancer, round cell sarcomas, gastrointestinal stromal tumors, gliomas, and other malignancies. The absence of specific monoclonal antibodies (mAb) has limited its detection and our understanding of its oncogenic function. METHODS: An ETV1 specific rabbit mAb (29E4) was raised using an immunogenic peptide. Key residues essential for its binding were probed by ELISA and its binding kinetics were measured by surface plasmon resonance imaging (SPRi). Its selective binding to ETV1 was assessed by immunoblots and immunofluorescence assays (IFA), and by both single and double-immuno-histochemistry (IHC) assays on prostate cancer tissue specimens. RESULTS: Immunoblot results showed that the mAb is highly specific and lacked cross-reactivity with other ETS factors. A minimal epitope with two phenylalanine residues at its core was found to be required for effective mAb binding. SPRi measurements revealed an equilibrium dissociation constant in the picomolar range, confirming its high affinity. ETV1 (+) tumors were detected in prostate cancer tissue microarray cases evaluated. IHC staining of whole-mounted sections revealed glands with a mosaic staining pattern of cells that are partly ETV1 (+) and interspersed with ETV1 (-) cells. Duplex IHC, using ETV1 and ERG mAbs, detected collision tumors containing glands with distinct ETV1 (+) and ERG (+) cells. CONCLUSIONS: The selective detection of ETV1 by the 29E4 mAb in immunoblots, IFA, and IHC assays using human prostate tissue specimens reveals a potential utility for the diagnosis, the prognosis of prostate adenocarcinoma and other cancers, and the stratification of patients for treatment by ETV1 inhibitors.


Asunto(s)
Neoplasias de la Próstata , Factores de Transcripción , Masculino , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/genética , Anticuerpos Monoclonales , Neoplasias de la Próstata/diagnóstico , Immunoblotting
4.
Sci Rep ; 12(1): 5404, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35354846

RESUMEN

TP53 is one of the most frequently altered genes in prostate cancer. The precise assessment of its focal alterations in primary tumors by immunohistochemistry (IHC) has significantly enhanced its prognosis. p53 protein expression and lymphovascular invasion (LVI) were evaluated for predicting metastatic progression by IHC staining of representative whole-mounted prostate sections from a cohort of 189 radical prostatectomy patients with up to 20 years of clinical follow-up. Kaplan-Meier survival curves were used to examine time to distant metastasis (DM) as a function of p53 expression and LVI status. TP53 targeted sequencing was performed in ten tumors with the highest expression of p53 staining. Nearly half (49.8%) of prostate tumors examined showed focal p53 expression while 26.6% showed evidence of LVI. p53(+) tumors had higher pathologic T stage, Grade Group, Nuclear Grade, and more frequent LVI. p53 expression of > 5% and LVI, individually and jointly, are associated with poorer DM-free survival. TP53 mutations were detected in seven of ten tumors sequenced. Four tumors with the highest p53 expression harbored likely pathogenic or pathogenic mutations. High levels of p53 expression suggest the likelihood of pathogenic TP53 alterations and, together with LVI status, could enhance early prognostication of prostate cancer progression.


Asunto(s)
Próstata , Neoplasias de la Próstata , Humanos , Inmunohistoquímica , Masculino , Pronóstico , Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/cirugía , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
5.
J Immunol ; 201(1): 278-295, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29752311

RESUMEN

Myeloid-derived suppressor cells (MDSCs) are known suppressors of antitumor immunity, affecting amino acid metabolism and T cell function in the tumor microenvironment. However, it is unknown whether MDSCs regulate B cell responses during tumor progression. Using a syngeneic mouse model of lung cancer, we show reduction in percentages and absolute numbers of B cell subsets including pro-, pre-, and mature B cells in the bone marrow (BM) of tumor-bearing mice. The kinetics of this impaired B cell response correlated with the progressive infiltration of MDSCs. We identified that IL-7 and downstream STAT5 signaling that play a critical role in B cell development and differentiation were also impaired during tumor progression. Global impairment of B cell function was indicated by reduced serum IgG levels. Importantly, we show that anti-Gr-1 Ab-mediated depletion of MDSCs not only rescued serum IgG and IL-7 levels but also reduced TGF-ß1, a known regulator of stromal IL-7, suggesting MDSC-mediated regulation of B cell responses. Furthermore, blockade of IL-7 resulted in reduced phosphorylation of downstream STAT5 and B cell differentiation in tumor-bearing mice and administration of TGF-ß-blocking Ab rescued these IL-7-dependent B cell responses. Adoptive transfer of BM-derived MDSCs from tumor-bearing mice into congenic recipients resulted in significant reductions of B cell subsets in the BM and in circulation. MDSCs also suppressed B cell proliferation in vitro in an arginase-dependent manner that required cell-to-cell contact. Our results indicate that tumor-infiltrating MDSCs may suppress humoral immune responses and promote tumor escape from immune surveillance.


Asunto(s)
Linfocitos B/inmunología , Interleucina-7/inmunología , Neoplasias Pulmonares/inmunología , Células Supresoras de Origen Mieloide/inmunología , Factor de Transcripción STAT5/inmunología , Escape del Tumor/inmunología , Traslado Adoptivo , Animales , Linfocitos B/citología , Células de la Médula Ósea/inmunología , Diferenciación Celular/inmunología , Línea Celular Tumoral , Proliferación Celular , Técnicas de Cocultivo , Femenino , Inmunoglobulina G/sangre , Interleucina-7/sangre , Ratones , Ratones Endogámicos C57BL , Células Supresoras de Origen Mieloide/trasplante , Fosforilación , Transducción de Señal/inmunología , Factor de Crecimiento Transformador beta/sangre , Microambiente Tumoral/inmunología
6.
Oncotarget ; 7(46): 75407-75424, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27705910

RESUMEN

Indoleamine 2,3-dioxygenase (IDO) has been implicated in immune evasion by tumors. Upregulation of this tryptophan (Trp)-catabolizing enzyme, in tumor cells and myeloid-derived suppressor cells (MDSCs) within the tumor microenvironment (TME), leads to Trp depletion that impairs cytotoxic T cell responses and survival; however, exact mechanisms remain incompletely understood. We previously reported that a combination therapy of gemcitabine and a superoxide dismutase mimetic promotes anti-tumor immunity in a mouse model of lung cancer by inhibiting MDSCs, enhancing polyfunctional response of CD8+ memory T cells, and extending survival. Here, we show that combination therapy targets IDO signaling, specifically in MDSCs, tumor cells, and CD8+ T cells infiltrating the TME. Deficiency of IDO caused significant reduction in tumor burden, tumor-infiltrating MDSCs, GM-CSF, MDSC survival and infiltration of programmed death receptor-1 (PD-1)-expressing CD8+ T cells compared to controls. IDO-/- MDSCs downregulated nutrient-sensing AMP-activated protein kinase (AMPK) activity, but IDO-/- CD8+ T cells showed AMPK activation associated with enhanced effector function. Our studies provide proof-of-concept for the efficacy of this combination therapy in inhibiting IDO and T cell exhaustion in a syngeneic model of lung cancer and provide mechanistic insights for IDO-dependent metabolic reprogramming of MDSCs that reduces T cell exhaustion and regulates anti-tumor immunity.


Asunto(s)
Metabolismo Energético , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Microambiente Tumoral/inmunología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Inmunomodulación/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Ratones , Ratones Noqueados , Modelos Biológicos , Células Supresoras de Origen Mieloide/patología , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Carga Tumoral
7.
Oncoimmunology ; 3(1): e27401, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24711958

RESUMEN

We have recently demonstrated that the combination of gemcitabine and a superoxide dismutase mimetic protects mice against lung cancer by suppressing the functions of myeloid-derived suppressor cells and by activating memory CD8+ T-cell responses. Persistent memory cells exhibited a glycolytic metabolism, which may have directly enhanced their effector functions. This combinatorial therapeutic regimen may reduce the propensity of some cancer patients to relapse.

8.
FEBS J ; 281(10): 2431-42, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24684682

RESUMEN

Selective estrogen receptor modulators such as tamoxifen (TAM) significantly improve breast cancer-specific survival for women with estrogen receptor-positive (ER+) disease. However, resistance to TAM remains a major clinical problem. The resistant phenotype is usually not driven by loss or mutation of the estrogen receptor; instead, changes in multiple proliferative and/or survival pathways over-ride the inhibitory effects of TAM. Estrogen-related receptor Î³ (ERRγ) is an orphan member of the nuclear receptor superfamily that promotes TAM resistance in ER+ breast cancer cells. This study sought to clarify the mechanism(s) by which this orphan nuclear receptor is regulated, and hence affects TAM resistance. mRNA and protein expression/phosphorylation were monitored by RT-PCR and western blotting, respectively. Site-directed mutagenesis was used to disrupt consensus extracellular signal-regulated kinase (ERK) target sites. Cell proliferation and cell-cycle progression were measured by flow cytometric methods. ERRγ transcriptional activity was assessed by dual-luciferase promoter-reporter assays. We show that ERRγ protein levels are affected by the activation state of ERK/mitogen-activated protein kinase, and mutation of consensus ERK target sites impairs ERRγ-driven transcriptional activity and TAM resistance. These findings shed new light on the functional significance of ERRγ in ER+ breast cancer, and are the first to demonstrate a role for kinase regulation of this orphan nuclear receptor.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Sistema de Señalización de MAP Quinasas , Receptores de Estrógenos/metabolismo , Tamoxifeno/farmacología , Antineoplásicos Hormonales/farmacología , Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/fisiología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Mutagénesis Sitio-Dirigida , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Receptores de Estrógenos/química , Receptores de Estrógenos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/farmacología
9.
Cancer Res ; 73(22): 6609-20, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24085788

RESUMEN

Chemoresistance due to heterogeneity of the tumor microenvironment (TME) hampers the long-term efficacy of first-line therapies for lung cancer. Current combination therapies for lung cancer provide only modest improvement in survival, implicating necessity for novel approaches that suppress malignant growth and stimulate long-term antitumor immunity. Oxidative stress in the TME promotes immunosuppression by tumor-infiltrating myeloid-derived suppressor cells (MDSC), which inhibit host protective antitumor immunity. Using a murine model of lung cancer, we demonstrate that a combination treatment with gemcitabine and a superoxide dismutase mimetic targets immunosuppressive MDSC in the TME and enhances the quantity and quality of both effector and memory CD8(+) T-cell responses. At the effector cell function level, the unique combination therapy targeting MDSC and redox signaling greatly enhanced cytolytic CD8(+) T-cell response and further decreased regulatory T cell infiltration. For long-term antitumor effects, this therapy altered the metabolism of memory cells with self-renewing phenotype and provided a preferential advantage for survival of memory subsets with long-term efficacy and persistence. Adoptive transfer of memory cells from this combination therapy prolonged survival of tumor-bearing recipients. Furthermore, the adoptively transferred memory cells responded to tumor rechallenge exerting long-term persistence. This approach offers a new paradigm to inhibit immunosuppression by direct targeting of MDSC function, to generate effector and persistent memory cells for tumor eradication, and to prevent lung cancer relapse.


Asunto(s)
Carcinoma Pulmonar de Lewis/inmunología , Tolerancia Inmunológica/inmunología , Neoplasias Pulmonares/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Células Mieloides/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Carcinoma Pulmonar de Lewis/patología , Carcinoma Pulmonar de Lewis/terapia , Terapia Combinada , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapéutico , Femenino , Inmunosupresores/uso terapéutico , Inmunoterapia Adoptiva , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Ratones , Ratones Endogámicos C57BL , Células Tumorales Cultivadas , Microambiente Tumoral/inmunología , Gemcitabina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...